If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+158x-40=0
a = 8; b = 158; c = -40;
Δ = b2-4ac
Δ = 1582-4·8·(-40)
Δ = 26244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{26244}=162$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(158)-162}{2*8}=\frac{-320}{16} =-20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(158)+162}{2*8}=\frac{4}{16} =1/4 $
| r=(5) | | 84=-16x^2+80x | | 1/2=7/16x | | 300*15=x | | 3(n+4)=-15=0 | | x-0.1x=189 | | 6(y-5)=2(5y-1) | | 2u=3u-24 | | 5s+47=127 | | 127s=5s+47 | | -7.2(x+3)=14 | | -.66a-6=12 | | s=5s+47 | | -5(-2+r)=95=0 | | -7x-119=89-15x | | 27=-n-8 | | t+16=5t-96 | | 131+-12x=71 | | 2x+27=x+27 | | -7x-19=89-15x | | 2c=4c-40 | | 0=(7-x)(6x+1) | | 9(n-9)=11n-13 | | 2m-8|=8 | | 53=-7n+11 | | -5x^2-87x-391=3x-6 | | -72=-7+5x=0 | | -30=4x-6 | | -3x+8=-55+6 | | 5x-14=24 | | 8(n+1)=8n+8 | | -k+1=3k+2 |